Computing the Girth of a Planar Graph

نویسنده

  • Hristo Djidjev
چکیده

We give an O(n log n) algorithm for computing the girth (shortest cycle) of an undirected n-vertex planar graph. Our solution extends to any graph of bounded genus. This improves upon the best previously known algorithms for this problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOME GRAPH PARAMETERS ON THE COMPOSITE ORDER CAYLEY GRAPH

In this paper, the composite order Cayley graph Cay(G, S) is introduced, where G is a group and S is the set of all composite order elements of G. Some graph parameters such as diameter, girth, clique number, independence number, vertex chromatic number and domination number are calculated for the composite order Cayley graph of some certain groups. Moreover, the planarity of composite order Ca...

متن کامل

On Tensor Product of Graphs, Girth and Triangles

The purpose of this paper is to obtain a necessary and sufficient condition for the tensor product of two or more graphs to be connected, bipartite or eulerian. Also, we present a characterization of the duplicate graph $G 1 K_2$ to be unicyclic. Finally, the girth and the formula for computing the number of triangles in the tensor product of graphs are worked out.

متن کامل

Computing the Girth of a Planar Graph in O(n logn) Time

We give an O(n log n) algorithm for computing the girth (shortest cycle) of an undirected n-vertex planar graph. Our solution extends to any graph of bounded genus. This improves upon the best previously known algorithms for this problem.

متن کامل

Computing the Girth of a Planar Graph in Linear Time

The girth of a graph is the minimum weight of all simple cycles of the graph. We study the problem of determining the girth of an n-node unweighted undirected planar graph. The first nontrivial algorithm for the problem, given by Djidjev, runs in O(n5/4 logn) time. Chalermsook, Fakcharoenphol, and Nanongkai reduced the running time to O(n log n). Weimann and Yuster further reduced the running t...

متن کامل

On the girth of the annihilating-ideal graph of a commutative ring

The annihilating-ideal graph of a commutative ring $R$ is denoted by $AG(R)$, whose vertices are all nonzero ideals of $R$ with nonzero annihilators and two distinct vertices $I$ and $J$ are adjacent if and only if $IJ=0$. In this article, we completely characterize rings $R$ when $gr(AG(R))neq 3$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000